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The Fermi edge singularity and boundary condition changing 
operators 
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t Canadian Institute for Advanced Research and Physics Department, University of British 
Columbia, Vancouver, B C  V6TlZI Canada 
$ Joseph Henry laboratory, Princeton University, Princeton. NJ 08544, USA 

Received 25 April 1994 

Absbaet. The boundary conformal held theory approach to quantum impurity problems is used 
to study the Fermi edge singularity, occurring in the x-ray adsorption probablility. The deep- 
hole creation operator, in the effective lowenergy theory, changes the boundvy condition on 
the conduction electrons. By a conformal mapping, the dimension of such an operator is related 
to the ground-state energy for a finite system with different boundary conditions at the WO 
ends. The Fermi edge singularity is solved, using this method, for the Luuinger liquid including 
backscattering and for the multi-channel Kondo problem. 

1. Introduction 

We have recently developed a new method for studying quantum impurity problem based 
on conformal field theory with boundaries [l]. Using this method we have re-derived known 
results and, in some cases obtained new results, on the multi-channel [Z] and two-impurity 
Kondo problem [3], impurities in spin chains [4]. magnetic-monopole-baryon systems [5] 
and tunnelling in quantum wires [6] .  The purpose of the present paper is to discuss the 
extension of OUT method to another type of quantum impurity problem which is exemplified 
by the Fermi edge singularity [7]. The standard simplified Hamiltonian for this problem is 

Here ak annihilates a conduction-band electron and b annihilates the ionic deep core electron. 
One is interested in calculating the two-point Green function for the deep core operator b 
and the operator bal which creates a core hole and a conduction electron; the latter transition 
is affected by x-ray absorption. Since the Hamiltonian of equation (1.1) commutes with 
the core electron number bt6, the Hilbert space separates into two sectors with the hole 
absent or present. When there is no hole, we simply obtain the free conduction-electron 
Hamiltonian 

k 

When the hole is present, the conduction electrons also feel a scattering potential, V: 

(1.2) 
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To calculate the deep core Green function (bt(t)b(O)), we must solve the time-dependent 
response of the conduction elecaon-s.for turning this potential on suddenly at time 0 and 
then turning it off again at time t .  -As f -b CO this Green function exhibits non-trivial 
power-law decay with the exponent depending on the potential V ,  

The singularity only depends on the behaviour of the potential at the Fermi surface. 
Therefore, it is entirely determined by the phase shift 6 at the Fermi surface kF. (In general, 
it depends on the phase shifts in all angular momentum channels at kF. For simplicity, 
we focus on the case where there is only a single channel with a non-zero phase shift 
corresponding to a &function potential.) Since the dependence of the phase shift on k - - k ~  
is irrelevant, the effective low-energy Hamiltonian for the problem has a constant phase shift 
for -A < k - kp < A, where A is the cut-off (which obeys A << kp) .  A constant phase 
shift corresponds to a simple boundary condition relating incoming and outgoing waves at 
the impurity location 

I A f P c k  and A W W Ludu,ig 

= ezi6 A" (0). (1.4) 

Thus, the effect of acting with the core hole operator b is to change the boundary conditions 
in the low-energy theory. The basic Fermi edge singularity problem is to calculate the 
scaling dimension of a boundary condition changing operator. As such, we see that it has 
numerous generalizations to other quantum impurity problems. 

The notion of boundary condition changing operators also plays a fundamental role 
in Cardy's boundary conformal field theory [8].  He developed a theory of conformally 
invariant boundary conditions and boundary operators. Each pair of such boundary 
conditions corresponds to a boundary operator. However, the reverse is not true. There are 
also boundary operators which do not change the boundary conditions. We have discussed 
these extensively in our previous papers on quantum impurity problems [1-6,9]. The 
purpose of this paper is to study boundary condition changing operators in quantum impurity 
problems using Cardy's boundary conformal field theory. 

Figure 1. Boundary cnndilion changing opemlors act n1 times TI and rz 

The general situation is illustrated in figure 1. By s-wave projection, or its 
generalizations, we may formulate our quantum impurity problem in one space and one 
time dimension on the half-plane r > 0. Let us assume that, in the distant past and 
future, some conformally invariant boundary conditions A apply. At (imaginary) time TI, 
a boundary operator 0 acts which changes the boundary conditions to B .  At time rZ, Ot 
acts and reverts the boundary conditions to A again. It is convenient to set the velocity to 
unity and use the complex coordinate z = r + ir. We assume that the bulk Hamiltonian 
is invariant under conformal transformations z -b f(z) and that the boundary conditions 
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respect the subgroup of conformal transformations that map the real axis z = r into itself. 
It is very useful to apply the conformal transformation 

where 1 is an arbitrary length scale. This maps the half-plane into the infinite strip w = u+iu, 
0 < U f I ,  as shown in figure 1. Note that the positive real axis 5 > 0 maps onto the 
lower boundary of the strip U = 0. For convenience, we have chosen the points at which 
the boundary operators act to obey r, > 0 so that they both map onto the lower boundary 
of the strip. Hence, the boundary conditions on the top of the strip are always A but on 
the bottom they are B for ut < U c u2 and A otherwise. It appears that, in all physical 
cases, the ground state with the same boundary condition on the top and bottom of the strip 
is the absolute ground state, i.e. the primary state in the conformal tower corresponding to 
the identity operator. 

We now wish to relate the scaling dimension of the boundary condition changing 
operator 0 to the ground-state energy of the finite system with boundary condition A 
on one side and B on the other. Letting this dimension be x and assuming a convenient 
normalization for the operator, Green's function on the half plane with boundary condition 
A is 

Green's function on the strip is obtained by the conformal mapping. Assuming U to be 
primary we obtain 

Now let u2 - UI >> 1 ,  giving 

(1.8) ( A A I O ( ~ , ) U + ( ~ ~ ) I A A )  + (i) = Ir e- nx(u2-ul) / l ,  

Here IAA) denotes the ground state on the strip with boundary condition A on both sides. 
It simply corresponds to the absolute ground state, as remarked above. On the other hand, 
we may also calculate the Green function on the strip by inserting a complete set of states 

Note that, in general, this sum must incIude all states with all possible boundary conditions 
on the bottom of the strip (but a fixed boundary condition A on top of the strip). The 
lowest-energy intermediate state is the ground state with boundary conditions A on the top 
and B on the bottom. Thus, 

1 
x = ,(EOAB - E ; A ) .  (1.10) 
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(The other terms in the expansion of equation (1.9) correspond to the contribution of excited 
states with boundary conditions A awl B.) Thus, we see that the scaling dimension of the 
operator which changes the boundary conditions from A to B is proportional to the ground- 
state energy with boundary conditions A, B ,  minus the ground-state energy with boundary 
conditions A,  A. 

So far, we have assumed that U-produces the ground state in the sector of the Hilbert 
space with the modified boundary conditions A, B.  It can also happen that the lowest-energy 
state produced by U is an excited state in this sector, E i B .  In this case 

I Afpeck and A W W Ludwig 

x = - (EAB ' I  - (1.11) 
K 

As we will see below, the deep core hole operator creates the ground state with a modified 
boundary condition, whereas the core hole conduction electron pair operator (which couples 
to the x-ray field) produces an excited state with a modified boundary condition. 

In the next section we discuss the Fermi edge singularity for a Fermi liquid from 
this perspective, verifying equations71.10) and (1.11). In section 3 we discuss it for a 
Luttinger liquid, i.e. an interacting one-dimensional electron system. In particular, we 
confirm the universal backscattering exponent recently obtained by Prokofev I l l ]  by a 
different method. In section 4, we discuss the multi-channel Kondo-Anderson model from 
the perspective of boundary condition changing operators. In section 5, we discuss the 
connection between boundary condition changing operators and fusion, observing that the 
results of section 3 suggest a 'fusion rules' approach to the perfectly reflecting fixed point 
in a Luttinger liquid. We hope that this observation may lead to an exact solution of the 
mysterious finite-reflectance critical points discovered by Kane and Fisher [ 121. 

2. The Fermi edge singularity in a Fermi liquid 

In this section we briefly review the solution of the Fermi edge singularity in a Fermi 
liquid by Schotte and Schotte 1131 and demonstrate that the relationship between scaling 
dimensions and energies of equations (1.10) and (1.11) is obeyed. For simplicity we assume 
a spherically symmetric dispersion relation and only s-wave scattering. The problem then 
reduces to a one-dimensional one defined on the half-line r z 0. It is convenient to work 
with left-moving fermions on the whole line by reflecting the right-movers to the negative 
axis 

@d-r) @ ~ ( r ) .  (2.1) 

The left-movers are functions of f + x only. (We set the Fermi velocity equal to one.) 
Hence, the Hamiltonian density becomes 

We have dropped the ubiquitous subscript L. We have also dropped the core hole energy Eo. 
It must be reinserted as a shift in the frequency upon Fourier transforming the expressions 
derived below. To make further progress we bosonize. We only need consider the left- 
moving half of a free massless boson field. Again we drop the L subscript. The left-moving 
fermion is represented in terms of a left-moving boson as 
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The Hamiltonian becomes 

The two Hamiltonians, HO and HI of equations (1.2) and (1.3), become 

2 

X0+) 

and 

where we have dropped a cut-off-dependent ground-state energy contribution in 311 
corresponding to a shift in the core hole energy EO. This might seem dangerous since 
the difference in the ground-state energies of HO and HI will play a crucial role in what 
follows. However, it is only the universal part of this ground-state energy, determined by 
modular invariance, which will contribute. Note that 'HI takes the same form as 'Ho when 
written in terms of a shifted field: 

( ~ ( x )  = &1 for x > 0 and x e 0, respectively.) The fermion field is represented in terms 
of the boson as 

r/r(x) a exp(i&@(x)) = exp(i&$(x) + ~vc(x)/z). (2.8) 

Recalling from equation (21) that the field at x c. 0 is the outgoing field, we see. that 

pout = e2"r/rii. (2.9) 

with the phase shift 

8 = -VIZ.  (2.10) 

Thus, the bosonized model, with constant V, produces a k-independent phase shift equivalent 
to a boundary condition. 

Schotte and Schone [13] made the crucial observation that 'HI is equivalent to XO under 
a canonical transformation 

X, = cr'xou. (2.11) 

This follows from the commutation relations between the left-moving boson field @ and its 
derivative 

[y" = 3 S ( x  2 - y )  (2.12) 
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(The validity of this commutator can be checked by observing that, for a left-mover, 
a@/& = a+/at  and recalling that the full boson field is a sum of left and right parts, 
both of which contribute to the canonical commutation relations.) We find the operator U 
satisfying equation (2.1 1) is 

I Afleck and A W W Ludwig 

U = exp(2i64(0)/&). (2.13) 

We note that U can only be considered a unitary operator if we work in the extended Hilbert 
space which includes states with all possible boundary conditions. U maps whole sectors 
of this Hilbert space, with particular boundary conditions, into each other. 

Now that we understand the boundary condition changing operator U, it is 
straightforward to calculate Green's functions. To calculate the Green's function for the 
deep core operator b( t )  we use 

bt(?) = eiHlbte-iHt - - eiHo:bte-Gfil (2.14) 

The second equality holds since the core hole must be present before bt acts, but not 
after. The calculation then reduces to one in bosonic theory with the core hole operators 
eliminated: 

(bt(r)b(O)) = (e'Ho'e-'!It). (2.15) 

Now, using 

e--iHIt = Ute-iHotU (2.16) 

Using the free boson propagatox 

(@(r)+(O)) = -i ln( to)  

where D is an ultraviolet cut-off, we obtain 

(2.17) 

(2.18) 

(2.19) 

Similarly, bt(t)+(r, 0) reduces to 

giving the x-ray edge exponent 

Fourier transforming, we obtain the singularity in the x-ray adsorption probability 

(2.21) 

(2.22) 
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with 

(Y = 1 - (1 -S/*)2 = 2(S/n)  - (8/a)2. (2.23) 

(As mentioned above, strictly speaking, the core hole energy Eo appearing on the right-hand 
side should be a renormalized one.) 

We now wish to verify equations (1.10) and (1.1 l), relating scaling dimensions to finite- 
size energy levels. Thus, we put the system in a box of length 1 and impose the convenient 
boundary conditions 

'kR(0) = 'kL(0) 'kR(2) = -'kL(l). (2.24) 

The former boundary condition is the result of the s-wave projection from three dimensions. 
The latter could arise, for example, from a vanishing boundary condition for the three- 
dimensional fermions on the surface of a sphere. It is actually more convenient to use the 
alternative formulation of the theory where we work with left-movers only on an interval 
of length 22 defined by equation (2.1). (When using this formulation we drop the subscript 
L, as above.) Then the first of equations (2.24) simply expresses the continuity of $L(x) at 
the origin, whereas the second becomes 

$ ( - I )  = -?m. (2.25) 

In the free theory, from the bosonization formula of equation (2.3), taking into account the 
non-commutativity of the left-moving fields Q ( x )  and 4(y) .  This implies 

@(-I) - @ ( I )  = f i n  n = 0,  il. f 2 , .  . . . (2.26) 

The mode expansion for # ( x )  with this boundary condition takes the form 

(2.27) 

Here the a,"'s are boson annihilation operators. Substituting into the formula for the 
Hamiltonian with no core hole (equation (1.2)) we find the spectrum 

(2.28) 

where the rim's are the occupation numbers for the mth boson mode, ais,. The universal 
ground-state energy Eo = -n/242 is required by modular invariance [IO]. It will play an 
important role in some of what follows. We can easily extend this to the theory with phase 
shift S. The first of equation (2.24) is now modified to 

I ~ ~ R ( o )  = e'%(o). (2.29) 

We may again switch to a purely left-moving formulation by defining 

$L(-x) = eZ'%/Q(x) (x > 0) (2.30) 
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but now the boundary condition at x = I becomes 
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@(-[I = -ezis@(L). (2.31) 

In bosonized form this becomes 

$ ( I )  - $ ( - I )  = f i ( n  - 8 / ~ ) .  (2.32) 

Note that this is the boundary condition obeyed by the shifted field 6 of equation (2.7). n 
is shifted to n - S / R  in the mode expansion of equation (2.27) and the spectrum becomes 

(2.33) 

We can now read off the scaling dimensions from the spectra of equations (2.28) and (2.33) 
using equations (1.10) and (1.1 I). The operator U or b which creates a core hole takes the 
ground state into the phase-shifted ground state. Hence its scaling dimension is 

(2.34) 

where the superscript denotes the ground state and the subscript denotes the phase shift. 
The operator b@t maps the ground state into the state with phase shift 6 and one conduction 
electron present, corresponding to n = 1 in equation (2.33). Hence, 

y :y I I  xbpj = - (E* - E;) = - 1 - - 
?I 2 

(2.35) 

Since the two-point Green function for an operator of dimension x scales as t-&, we see 
that equations (2.34) and (2.35) agree with equations (2.19) and (2.21). 

Note that it was crucial to obtain the correct value for the relative ground-state energy 
with different boundary conditions in order to obtain the right scaling dimensions. These 
ground-state energies emerge naturally from the bosoniwl form of the theory, as derived 
above, but are not obvious from the fermion form. They can also be derived from a modular 
transformation, as discussed in [6] .  

3. Fermi edge singularity in a Luttinger liquid 

In this section we derive the Fermi edge exponents for a Luttinger liquid, including 
backscanering. Our results, valid for arbitrary strength of the bulk interactions, agree 
completely with those of Prokov'ev [ I l l  derived by a different method. Our approach 
is more closely related to that of 1141. We obtain the universal backscattering scaling 
dimension of 1/16 from the dimension of the 'twist operator' in a free-boson theory which 
is related to the order parameter in the two-dimensional Ising model. In section 3.1 we 
discuss the case with zero backscattering. In section 3.2 we include backscattering. In 
section 3.3 we consider the case of electruns with spin and general forward and backward 
scattering. 
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The one-dimensional fermions consist of left- and right-movers, PL and q ~ ,  with general 
bulk Luttinger-liquid interactions. The (parity-invariant) core hole potential consists of 
forward and backward scattering parts fi and vb:  

‘Hch = 8(x)bbt[W@L$t + @;@RI + V~@J!@R 4- @A@dI. (3.1) 

Once again, it is convenient to bosonize. Now we introduce both left- and right-moving 
bosons with 

4 = 4~ -k 4 ~ .  (3.2) q,L o( eiGh *R o( e-i&h 

The core hole interaction becomes 

(3.3) 

The Luttinger-liquid interactions just have the effect of renormalizing the Fermi velocity and 
rescaling the boson fields. Following the notation of [6],  we introduce the ‘compactification 
radius’ R for the boson field such that R = l/& in the non-interacting case. The 
interactions leave the bulk Hamiltonian in the non-interacting form after the rescaling 

4 + 4 f&R. (3.4) 

Repulsive interactions lead to R > l/&. The parameter R is related to the parameter 
g in [I21 and the parameter 4 in [ l l ]  (not to be confused with the quantum field in the 
present notation) by 

(3.5) 2 g =e* = 1/4nR . 

After this rescaling the full Hamiltonian becomes 

(3.6) 

(We have again set the velocity equal to one.) We see that forward and backward scattering 
have very different effects. The forward-scattering term is always precisely marginal, leaving 
the theory non-interacting. It can be treated by the same methods as those used in the Fermi- 
liquid case discussed in the previous section. On the other hand, the backscattering term is 
relevant for R < l/& corresponding to repulsive interactions (and irrelevant in the other 
case). It introduces interactions into the boson model destroying its harmonic form. 

It turns out to be convenient to use a somewhat different basis of fields to treat 
this problem. The same technique has been used previously in our treatment of this 
and other quantum impurity problems. The essential observation is that we may regard 
& ( - x )  +;(x) as a second left-moving field. Such a transformation would presumabIy 
not be very useful if there were any bulk interactions in the bosonic formulation that mixed 
& ( x )  and q5R(x) since these would become non-local. But, importantly, the bulk part of 
the Hamiltonian is free and decouples into left and right terms. The only interactions occur 
at x = 0 and hence remain local. Thus we are free to make this transformation if we 
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wish. The theory is most conveniently studied in terms of parity-even and parity-odd linear 
combinations of these two left-moving fields: 

I Ajj7eck and A W W Ludwig 

(3.7) 

(Note from equation (3.2) that a parity transformation has the effect: @&) e -&(-x),  
so the labels e and o are appropriate.) These fields obey the commutation relations 

M X ) ,  MY)I = [ ~ x ) ,  MY)I = -t i+ - Y )  

M X ) ,  c.(Y)~ = - l i  4 '  (3.8) 

The Hamiltonian reduces to a sum of commuting terms involving the left-moving fields &,, 
as 

1-I = - + - + ~ ( x ) b b +  ---+constant xv,cos- "I. (3.9) (?r (:t)z [ 2R:: R 

The usefulness of this peculiar change of variables is now evident: the Hamiltonian separates 
into two commuting terms for forward and backward scattering. The original fermion fields 
at the origin become 

(3.10) 

The initial boundary conditions on the boson fields and & simply specify that both fields 
are continuous at the origin. We will argue that the forward- and backward-scattering terms 
in the Hamiltonian are equivalent, at low energies, to modified boundary conditions on the 
fields and r,bo, respectively. We will again be interested in calculating the dimensions 
of boundary condition changing operators. These will simply factorize into products of 
commuting operators acting on & and &, respectively. All scaling dimensions will be 
sums of the forward- and backward-scattering parts from and &, respectively. Similarly, 
the finite-size spectrum will separate into a sum of even- and odd-excitation energies. For 
instance, the scaling dimension of the fermion field is 

1 
16?rR2' 

x*=IIR'+- (3.11) 

(Note that this gives x = i for R = l/&, the free-fermion case.) 

3.1. Fonvard scattering 

Forward scattering can be treated by the same method reviewed in section 2. The boundary 
condition changing operator U of equation (2.13) is 

U = exp(-iV&(O)/&rrR). (3.12) 

Thus, if we only have forward scattering, the deep hole annihilation operator has scaling 
dimension 

(3.13) 
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Similarly the operator btq determining the x-ray exponent becomes 

of dimension 

(3.15) 

Again this can be obtained from the finite-size spectrum with a phase-shifted boundary 
condition. We begin by defining the system on a circle of circumference 21; -1 < x < 1. 
Antiperiodic boundary conditions are imposed on the fermion fields: @L,R(Z) = -@L,~(- l ) ,  
From bosonization formula (3.2), taking into account the commutation relations, it can be 
seen [61 that the corresponding boundary conditions on the fields are 

m 
@,(I )  - @,,-I) = - 

2&R 
h ( I )  - #e(-l) = n&Rn (3.16) 

where n and m are arbitrag integers obeying 

n + m = 0 (mod 2). (3.17) 

The forward-scattering interaction of equation (3.9) shifts the boundary condition on 
to 

Vf & ( I )  - & - I )  = n f i R n  + - 
2&x R 

(3.18) 

as can be seen by absorbing the potential scattering into a redefinition of the field @e as in 
equation (2.7). Equivalently, the modified boundary conditions on the fermion fields are 

h(0') = exp[iVt/4nR21~(O-) 

h ( O - )  = exp[iVf/4rRZ1$~(OS), 

The mode expansions for the left-moving fields @e,o are 

(3.19) 

( f + X )  m 
$J0(t + x )  = -- +... n + m  = 0 (mod2) (3.20) 

21 2&R 

where the . . . represent the harmonic modes. The finite-size spectrum is given by 

n t m = 0  (mod2). 1 mz 

(3.21) 
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Note that the universal ground-state energy is doubled since there are two boson fields 
and &. 

To make contact with the general formalism of section 1 ,  we ‘fold’ the system about 
x = 0, regarding the left-moving fields at I < 0 as right-moving fields at x > 0. The 
above spectrum then corresponds to a trivial boundary condition at x = 1 and a phase shift 
at x = 0 corresponding to the forward-scattering potential vf. The ground-state energy 
(n = m = 0) E ~ / R  = x = V:/16nRZ gives the dimension of the deep-hole creation 
operator b in agreement with equation (3.13). The excited state with n = m = I gives the 
dimension of the operator 6’9 

I AfPeck and A W LV Ludwig 

(3.22) 

as in equation (3.15). Note that the energies are sums of even and odd parts and only the 
even part is modified by forward scattering. 

3.2. Backscattering 

Rather different methods are required to treat the backscattering interaction in equation (3.9). 
The Hamiltonian is presumably not unitarily equivalent to the free one. Furthermore, the 
backscattering interaction is relevant for R < i/& and is expected to renormalize to large 
values at low energies. Hence the scaling dimensions that we are after will not depend on 
the actual value of vb. A way around these difficulties was found by Prokofev [ l l ] .  He 
argued that i t  should be possible to replace the cosine backscattering interaction by one 
quadratic in and exhibited a unitary operator, independent of vb, which, at low energies, 
reduced the Hamiltonian to the non-interacting one. An alternative approach, which we use 
here, is to focus on the finite-size spectrum. As argued by Kane and Fisher [12] (see also 
[4]), vb renormalizes to 00 corresponding to perfectly reflecting behaviour at low energies. 
The problem then is to find the scaling dimension of the operator which changes a perfectly 
transmitting boundary condition (vb = 0) into a perfectly reflecting one (Vb = 00). (For the 
moment, we set the forward scattering to zero.) As explained in section 1, this is equivalent 
to finding the ground-state energy with a perfectly transmitting boundary at one end of the 
system and a perfectly reflecting boundaq at the other. This problem, which is essentially 
trivial, is solved in appendix B of [61 (see also 151). It is simplest to go back to the original 
left- and right-moving bosons of equation (3.2) on the interval - I  < x < I with -1 and 1 
identified. The perfectly reflecting boundary condition at the origin is 

@do*) = -+do*). ~ (3.23) 

Note that the spatial component of the current is J ,  a %$/at and vanishes at x -+ 0 as 
the origin is approached from either side. We may now use the trick of regarding the 
right-movers as reflected left-movers on both the positive and negative side of the origin. 
Hence, the system becomes equivalent to a single ieft-mover on an interval of length 41 
with boundary conditions 

q5(4f) - #(O) = 2RnR. (3.24) 

The spectrum is 

CO 

+2itR2n2 + c m n m ] .  
%l=l 

(3.25) 
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Note the extra prefactor of f due to the doubled length and the single ground-state energy 
term -1124, since we effectively only have one boson field. From this formula and 
equation (3.21), we can read the scaling dimension of the operator which converts the 
transmitting boundary condition into a reflecting one: 

(3.26) 

Alternatively, in terms of the even and odd bosons, the perfectly reflecting boundary 
condition is 

M O + )  = $do-) @do+) = -@do-). (3.27) 

@e obeys a trivial boundary condition but @,, obeys a twisted one. We see that the operator 
which changes the boundary condition from transmitting to reflecting acts trivially on @e 

but changes the sign of &. We see that inserting this boundary condition changing operator 
at the points 51 and tz corresponds to inserting a cut along the t axis between these two 
points. The field bo changes sign across the cut. This boundary condition changing operator 
is known as a twist operator. Its dimension, 1/16, is calculated in a somewhat different 
way in [I51 where its relationship with the king-model order parameter is also discussed. 
We note that the term in equation (3.25) proportional to nz is identical to a term in the 
spectrum with no scattering, i.e. equation (3.21) with Vf = 0. This, together with the nr 
even terms in equation (25), can be identified as the contribution to the energy from 
which is unchanged by backscattering. On the other hand, the contribution of &, is changed 
significantly; in particular, it becomes independent of R. 

The operator btrl, must correspond to a state with n = I, since the &dependence of 
this operator is simply that of the free fermion. Hence, 

(3.28) 

We may now include both forward and backscattering. A minor extension of the above 
calculation shows that the integer n, referring to the even sector, is shifted exactly as 
before, giving 

m ( n+- ~ X ~ R ~ ) ? ; ~ " ~ ~ ]  

Thus with both forward and backscattering, the dimensions of d and btrl, become 

(3.29) 

(3.30) 

These results agree completely with those of Prokof ev (equation (24) and (30) of [ 111). 
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3.3. Including spin 

We now extend the model to include the electron spin. The corehole part of the Hamiltonian 
is still given by equation (3.1) but with an implicit sum over spin indices. In general. we 
allow two Luttinger-liquid interactions which preserve only the U(1) subgroup of the spin 
rotation group corresponding to rotations about the z-axis. We again bosonize and change 
variables from independent bosons, for spin up and down, to spin and charge bosons & and 
& (see 161 for further details). We again introduce parity-even and parity-odd left-moving 
fields for both spin and charge. The full Hamiltonian density, in bosonized form, becomes 

I Afj'leck and A W W Ludwig 

+S(x)bbt + constant x Vb cos - 
R C  RI 

Here the 'compactification radii' for charge and spin bosons are determined by the Luttinger- 
liquid interactions. They are related to the parameters of Kane and Fisher by 

&,$ = I/nR?,,. (3.32) 

Prokof'ev only considers the SU(2) invariant case RE = l/&and parametrizes the charge 
sector interactions by 

e'@ = I/2nR:. (3.33) 

Note that the forward-scattering term only involves the even-charge boson &e and is, again, 
marginal. The backscattering term involves the odd-charge and odd-spin bosons. Under 
renormalization, we expect to generate pure spin and charge terms c0s[2fi$~,,/R,] and 
c o ~ [ 2 f i ~ ~ , , / R J .  The phase diagram% discussed extensively by Kane and Fisher 1121 (see 
also 161). Depending on the bulk interaction parameters, R, and R,. there are four stable 
phases in which spin and charge are either perfectly reflected or perfectly transmitted. For 
some values of R, and R, more than one of these phases is stable for some range of scattering 
parameters and some unstable non-trivial fixed points occur at an intermediate scattering 
potential. We restrict our attention to the four stable phases. The fermion operators at the 
origin can be written 

We first consider the c a e  of forward scattering only. The unitary operator which 
eliminates the forward-scattering term from the Hamiltonian is 

~~~ 

U = exp(- i&'V&.e(0)/r Re). (3.35) 
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Hence, with no backscattering 

v: 
Xh = - 

4rr Rz 

The backscattering term, depending on the values of R,  and R,, can twist the charge- 
or spin-odd boson; i.e. produce a perfectly reflecting boundary for charge and/or spin. 
From the discussion of the previous section, and from the finite-size spectra in [6], we 
see that each twist operator has dimension 1/16. Hence, Xb is increased by 1/16 in the 
charge-transmitting, spin-reflecting or charge-reflecting, spin-transmitting cases and by I /8 
in the charge- and spin-reflecting case. Only the last case was considered by Prokofev to 
correspond to SU(2)  symmetry R, = 1/& and a repulsive Luttinger-liquid interaction 
R,  > I/&. Similarly, to the spinless case, and as seen from the finite-size spectrum 
in [6], the dimension of xbt* is modified for relevant backscattering by the replacement of 
the term 1/16nRZ by 1/16. This replacement is made for the R, term in the case where 
charge is perfectly reflected and is made for the R, term in the case where spin is perfectly 
reflected. In particular, when charge and spin are both perfectly reflected 

(3.37) 

This is again in perfect agreement with Prokof'ev 1111. 

4. The Kondo effect 

In the previous sections we have considered fairly trivial examples of boundary condition 
changing operators where the Hamiltonian H I ,  which occurs after a deep hole is created, 
differs from the Hamiltonian Ho, which occurs without a deep hole by a simple potential 
scattering term. More general possibilities also exist in which the Hamiltonian, after the 
creation of a deep hole, differs from the unperturbed Hamiltonian by some non-trivial 
interaction terms involving additional dynamical degrees of freedom at the deep-hole 
location. An instructive example of this is provided by the Kondo-Anderson model, i.e. 
we consider the Kondo Hamiltonian but represent the impurity spin in terms of a deep-hole 
fermion operator with spin b, 

The Hamiltonian is thus 

Here i is a channel index which runs over k values corresponding to the multi-channel 
Kondo effect. We may again consider the x-ray edge problem for this core hole state which 
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now carries spin. Again, the Hamiltonian commutes with the core hole occupation number. 
When the core state is either vacant or doubly occupied, the Hamiltonian reduces to the free 
one. When it  is singly occupied the Hamiltonian reduces to the Kondo model. We have 
discussed the Kondo model extensively, emphasizing that, at low energies, the impurity spin 
is screened and all that remains is an effective conformally invariant boundary condition 
on the low-energy electronic degrees~of freedom [9,21. Thus, at low energies, b, is again 
a boundary condition changing operator. However, in the overscreened case (k z 2$,,), 
this Kondo boundary condition is non-trivial leading to exotic effects like fractional ground- 
state degeneracy and non-trivial scaling laws. In all our previous discussion of the Kondo 
effect, we have only considered correlation functions involving the conduction-electron 
operators and the impurity-spin operator Simp and not the core hole operator b,. All the 
corresponding boundary operators live in the Hilbert space with a fixed Kondo boundary 
condition. Equivalently, they correspond to states in the finitesize spectrum with Kondo 
boundary conditions at both ends of the system. In this section we enlarge our discussion 
to include the boundary condition changing operator 6,. 

The boundary operator corresponding to b, can be identified from the finitesize 
spectrum with Kondo boundary conditions at one end and free boundary conditions at 
the other. The ground state with free boundary conditions at both ends is the spin- and 
flavour-singlet charge-zero state. The Kondo boundary condition is obtained by fusion 
with the spin- 1/2 flavour-singlet charge-zero operator and therefore the resulting spectrum 
contains the corresponding conformal tower [ 9 ] .  Clearly the corresponding primary field 
g, has the right quantum numbers to correspond to the deep-hole operator be. Hence, we 
conclude that 191 
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(4.3) 

the dimension of the Ka-Moody primary field g,. This result was suggested previously by 
Tsvelik in another context [16]. In the special case of one channel, X b  = 1/4. In this case, 
the Kondo fixed point is of Fermi-liquid type and simply corresponds to a &n/2 phase shift 
for spin-up or spin-down electrons. This corresponds exactly with the results in section 2. 
From equation (2.34), the scaling dimension is 

(4.4) 

We may also calculate the dimension of the 'x-ray operators' 6"'I4Jpi. These have charge 
Q = 1, transforms under the fundamental representation of the flavour group and have spin 
j = 0 or 1 depending on how the spin indices are contracted. A primary field of these 
quantum numbers is obtained by fusion of the j = 1/2 primary with the conformal tower of 
the free-electron operator with j = 112, Q = 1 and fundamental flavour representation for 
k z 2. We expect it to correspond to the 'x-ray operators' which, therefore. have dimension 
[91 

1 k Z -  1 j ( j +  I )  
x . - - +  
' - 4 k  2k(2+k)+ 2 + k  (4.5) 

with j = 0 or I .  In the special case k = 1, xo = 1/4. In this case, the j = 1 primary does 
not exist so x, must be a descendent with x ,  = 5/4. These results can be obtained from 
the phase-shift picture of equation (2.13). using 

btl a expCWt@+ + 6 t @ $ ) / f i )  cx exp(fi&@d 

I ~ J Y ~  a exp(i&@c) e x p ( d G 4 J  (4.6) 
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where @c and @$ are charge and spin bosons and we have chosen (St, 61) = (n/2. - a / Z )  
in b+ and ( S t . 8 ~ )  = (-n/2, n/2) in b l .  

5. Fusion 

A useful method of generating new conformally invariant boundary conditions from known 
ones is by fusion [SI. We used this method to identify multi-channel Kondo boundary 
conditions [ 9 ] .  On the other hand, we did not use this technique to find the boundary 
conditions corresponding to perfect reflection in a Luttinger liquid 161. The insights gained 
from this paper suggest that such an approach is, in fact, possible. We hope that this will 
prove useful in solving a major open problem: the finite-reflectance critical points of Kane 
and Fisher [12]. 

If boundary condition B is obtained from bondary condition A by fusion with some 
operator U" then the partition function on a finite cylinder with boundary condition B at 
one end and an arbitrary boundary condition C at the other, ZBC, is determined by the same 
partition function with B replaced by A ,  ZAC, together with the fusion rule multiplicities 
N,"b. (NFb is a non-negative integer which specifies how many times the primary field UE 
appears in the operator product expansion of 0' with Ob.) The partition functions can b e  
expanded in characters ,yo of the ath conformal tower, 

where the &'s are non-negative integers. ZBC is determined by 

As first shown by Cardy [SI, under certain circumstances if an operator Oa changes 
boundary condition A into boundary condition B (i.e. produces the ground state on the snip 
with boundary condition B )  then B can be obtained from A by fusion with the operator 
U". We saw an example of this in the previous section where the j = 1/2 primary operator 
changed the free boundary condition into the 'Kondo boundary condition' and the latter 
was obtained from the former by fusion with this operator. Another example is provided 
by our discussion of forward scattering in section 3. With no scattering, general primary 
boundary operators are of the form 

After fusion with 
U t  = exp(iV&(O)/&nR) 

we obtain the boundary operators 

exp [i(nZ&rR + V + ~ T R ) @ ~ ( O ) ]  exp [im- 
&R 

(5.3) 

(5.4) 

(5.5) 
- 

corresponding to the finite-size spectrum of equation (3.21). 
We discovered in section 3 that the operator which changes a perfectly transmitting 

boundary condition into a perfectly reflecting one is the twist operator of dimension 
x = 1/16 for the odd boson +,,. Presumably, the latter boundary condition can be obtained 
from the perfectly transmitting one by fusion with this twist operator. (We have checked 
this explicitly for certain values of the compactification radius R.)  Including spin, we have 
two different twist operators for @c,o and @s,o. Presumably, fusion with some generalization 
of these twist operators will give the finite-reflectance critical point. 
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